Antineutrino Running at MiniBooNE

Morgan Wascko, LSU

Motivation

- v running is a subject of much interest
- CP violation in v sector
- Difference in oscillation probabilities for v, \overline{v}
- Major experimental obstacles:
 - v̄ cross sections not well known
 - wrong sign backgrounds
 - v in a \overline{v} beam

Asymmetry of \overline{v} , v oscillation probabilities in MiniBooNE verus v oscillation prob.

Outline

- Focus on WS BGs
- What MiniBooNE can do with one year of antineutrino running
 - 2.0E20 POT total
 - Cross section physics
 - Oscillations
- http://www-boone.fnal.gov/publicpages/ loi.ps.gz
- Window of opportunity for a near detector in the Booster Neutrino Beam:
 - SciBar detector
- http://home.fnal.gov/~wascko/scibar.pdf

Images of the MiniBooNE horn

Outline

- Focus on WS BGs
- What MiniBooNE can do with one year of antineutrino running
 - 2.0E20 POT total
 - Cross section physics
 - Oscillations
- http://www-boone.fnal.gov/publicpages/ loi.ps.gz
- Window of opportunity for a near detector in the Booster Neutrino Beam:
 - SciBar detector
- http://home.fnal.gov/~wascko/scibar.pdf

Comparison of ν_{μ} fluxes

Extract 8 GeV protons from Fermilab Booster 1.7 λ beryllium target (HARP results soon!)

Reversible magnetic horn Focusses mesons of specific charge Allows antineutrino running!

Wrong Sign BGs

- In neutrino running,
 wrong sign backgrounds
 are very small (2%)
- In antineutrino running they are much larger (30%)
- Cherenkov calorimeters
 cannot distinguish μ⁻
 from μ⁺
- Need a way to extract the WS BGs!

Wrong Sign BGs

- In neutrino running,
 wrong sign backgrounds
 are very small (2%)
- In antineutrino running they are much larger (30%)
- Cherenkov calorimeters cannot distinguish μ⁻ from μ⁺ (event by event)
- Need a way to extract the WS BGs!

Constraining WS BGs

- MiniBooNE has developed three methods of constraining the overall fraction of v, \overline{v}
 - μ direction
 - μ lifetime
 - $CCI\pi^{+}$ event selection
- Independent constraints
- Sensitive to total WS fraction
 - Not sensitive to energy spectrum of WS events

ws bg Constraints: µ Direction

- Softer Q² spectrum for antineutrino events means more forwardpeaked μ
- Can fit angular
 distribution shape and
 extract RS/WS fractions
- Using generated muon directions, can extract WS fraction with 5% uncertainty

μ Direction

- MiniBooNE has very good angular reconstruction for muons
- Tested with cosmic muon calibration system
- Fit distribution of

$$\cos^{-1}(\vec{u}_{MuTr} \cdot \vec{u}_{Fit})$$
$$xe^{-x^2/2\sigma^2}$$

- (projection of a 2D Gaussian)
- Account for intrinsic resolution of muon tracker
- Angular resolution = 4.0° at 400-500 MeV

μ Directions

- Reconstruction has little effect on this constraint
- WS fraction can be measured to 7% with reconstructed angles
- Can also use Q² distributions
 - Similar precision
 - Stronger constraint
 - Poorer resolution
 - Larger uncertainties (currently)

CC1π+ Selection

- Use CCIπ+ event selection:
- Tag $\nu_{\mu}^{} C \rightarrow \mu^{} \pi^{+} X$ events with two Michel electrons
- π- absorbed by carbon,
 do not decay
 - Cannot tag
 V_μC→μ⁺π⁻X
 events: only | Michel
- Two Michel sample is 85% pure WS
- Constrain WS fraction with 15% uncertainty

Neutrino type	# before cuts	# after cuts
ν _μ (WS)	30,539	2,525
ν _μ (RS)	71,547	461
Total	102,086	2,986

μ Lifetime

- Use muon decay rate in mineral oil to constrain WS BGs
- 8% µ- capture probability on carbon

•
$$\tau_{\mu-}=2.026\mu s$$
, $\tau_{\mu+}=2.197\mu s$

- Can extract WS contribution with 30% uncertainty
- Independent of kinematics and reconstruction

Comparison of muon lifetimes from $CCI\pi^{\dagger}$ data sample

μ⁻ lifetime

WS BG Constraints: Summary

Measurement	WS uncertainty	resultant $\overline{\nu}_{\mu}$ σ error
cosθ _μ	7%	2%
CCIπ ⁺	15%	5%
μ Lifetimes	30%	9%

Note can only measure overall rate of WS BGs, not energy spectrum

Status of \overline{V}_{μ} os

- Very few data, especially at low energy
- Not much understanding of nuclear targets
- \overline{v}_{u} CCQE
 - ~1700 events
- $\overline{\nu}_{u} NC\pi^{0}$
 - Only one (1) measurement ever.
- $\overline{\nu}_{\mu}$ CCI π^{-}
 - ~1300 events

ν_μ CC QE Scattering

- Few $\overline{\nu}_{\mu}$ QE measurements
- None below I GeV
- MiniBooNE expects
 ~40,000 CCQE
 interactions before
 cuts for 2E20 POT

ν_μ CC QE Scattering

Few ν
 μ QE
 measurements

None below I GeV

MiniBooNE expects
 ~40,000 CCQE
 interactions before
 cuts for 2E20 POT

-V_μ CC QE Scattering

<e></e>	Experiment	target	date	#QE evts
2 GeV	Gargamelle	C ₃ H ₈ CF ₃ Br	1979	766
I.3 GeV	BNL	H ₂	1980	13
I6 GeV	FNAL	NeH ₂	1984	405
6-7 GeV	SKAT	CF ₃ Br	1988	92
9 GeV	SKAT	CF ₃ Br	1990	159
5-7 GeV	SKAT	CF ₃ Br	1992	256
				1691

$\overline{\nu}_{\mu}$ NC π^{0}

- Only one measurement of $\bar{v}_{\mu} X \rightarrow \bar{v}_{\mu} N \pi^{0} X$ to date 1
 - 25% uncertainty at 2GeV
- Important for \overline{V}_e appearance searches
- Coherent production more apparent in antineutrino scattering

¹This appeared as a footnote in Faissner et al., Phys. Lett. 125B, 230 (1983)

¬_μ CCIπ Events

<e></e>	Experiment	target	date	#CCIπ¯ evts
I.5 GeV	Gargamelle	C ₃ H ₈ CF ₃ Br	1979	282
5-70 GeV	FNAL	H ₂	1980	247
5-200 GeV	BEBC	D ₂	1983	300
25 GeV	BEBC	H ₂	1986	375
7 GeV	SKAT	CF ₃ Br	1989	120
				1324

- Expectations for MiniBooNE
 - CCQE
 - NCπ0
 - νμ Disappearance
 - ve Appearance
- SciBar Detector in Booster
 Neutrino Beam

V_μ CC QE Scattering

- Expect ~32,000 $\overline{\nu}_{\mu}$ CC QE interactions within fiducial volume for 2E20 POT
- MiniBooNE's current CC QE event selection:
 - Tank (>100) & veto (<6) PMT hit cuts
 - Fisher discriminant cu: event topology
 - Select single, μ-like ring
- Using CC QE event selection, ~19,000 total events
 - 75% pure QE (30% of those are WS)
 - May be improved with further $\overline{\nu}_{\mu}$ refinements
- Using WS constraints, expect to measure $\bar{\nu}_{\mu}$ CC QE cross section with ~20% uncertainty

$\overline{\nu}_{\mu}$ NC π^{0}

- Expect >5000 $\overline{\nu}_{\mu}$ NC π^0 events within fiducial volume for 2E20 POT
- MiniBooNE's event selection requires:
 - Tank (>200) & veto (<6) PMT hit cuts
 - Two-ring reconstruction
 - $m_{\pi^0} > 50 \text{ MeV/c}^2$, $E_{\gamma} > 40 \text{ vMeV}$
- Application of event selection should yield
 - 1650 resonant events
 - I 640 coherent events (Rein & Sehgal)
 - ~I000 WS events

Reconstructed π^0 mass

ν_μ Disappearance

- Oscillation appearance searches are sensitive to CPV, but not CPTV
 - Need disappearance search as well to distinguish between CPV and CPTV
- MiniBooNE can perform both searches
- Shown: CPT violating case
 - ν_{μ} do not oscillate, but $\overline{\nu}_{\mu}$ do oscillate
- Note: no existing limits on CPTV v_µ disappearance

V_e Appearance

- Recall, LSND oscillations were seen in antineutrinos
 - $\bullet \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
 - True confirmation can only be made with antineutrino running!
- Shown: appearance sensitivity region for antineutrino oscillations in the case of no oscillations in neutrinos
 - Compare to LSND-KARMEN joint analysis allowed region
- Statistics limited!

A Window of Opportunity

- K2K beam operations terminated in early 2005
- SciBar detector became available for use
- A new collaboration has formed to bring it to FNAL and place it in the Booster Neutrino Beam upstream of MiniBooNE: SciBooNE
- Subdetectors:
 - SciBar
 - Electron Catcher (EC)
 - Muon Range Detector (MRD)
- Already commissioned, well understood

BNB $\bar{\nu}_{\mu}$ CCQE in SciBar

- SciBar has the ability to detect the recoil proton track from CCQE events
- Can use this to constrain the WS BG in antineutrino running, including the energy spectrum!

SciBooNE Physics Goals

- SciBar Physics
 - Radiative Δ decay
 - Energy dependence of NCπ0 production
 - Exclusive π -p final states
- Leveraging MiniBooNE
 - WS BG constraints
 - v_{μ} , \overline{v}_{μ} disappearance
 - Intrinsic v_e flux
- Helping T2K
 - $CCI\pi^{+} \sigma 5\%$
 - NCπ⁰ σ 10%
 - $\bullet \overline{v} \sigma s$

SciBooNE Schedule

- K2K beam operations halted in March, 2005
- Submitted report on physics potential to Fermilab directorate 10 June, 2005
- Director's Review II October, 2005
- Will present proposal (P-954) to PAC in December, 2005
- Hope to have detector in place collecting beam data before end of 2006
 - Current construction schedule requires
 ~9 months

Conclusions

- MiniBooNE can open up the antineutrino cross section landscape with just one year of data
- We have developed several novel techniques to constrain the overall level of WS BGs
- Approved to run through end of 2006
 - Will decide when to switch to antineutrino mode mid-November
- SciBooNE: collaboration to bring SciBar to BNB

MiniBooNE antineutrino running:

- "Addendum to the MiniBooNE Run Plan: MiniBooNE Physics in 2006"
- http://www-boone.fnal.gov/publicpages/loi.ps.gz

SciBar at BNB

- "Bringing the SciBar Detector to the Booster Neutrino Beam"
- http://home.fnal.gov/~wascko/scibar.pdf

\overline{V}_{μ} NC π^0

• Given the K2K coherent CCI π search, antineutrino running should be very interesting! (And very obvious.)

Experimental Setup

- Place SciBar on-axis 100 m from target
- Bring SciBar and EC from Japan
- Assemble MRD from salvaged parts from old fixed-target experiments at FNAL

BNB $\bar{\nu}_{\mu}$ CCQE in SciBar

- I-track/2-track studies allow extraction of energy spectrum of WS BGs
- Improves cross section and oscillation measurements!

- Studied several detector locations to maximize physics output
- Balance neutrino flux and spectrum, event rates, and cost
- Studied 8 locations in detail
- On-axis location has best physics potential

Total v flux and mean energy in BNB for different detector locations

- As off-axis angle increases:
 - Flux and mean energy decrease
 - WS fraction increases
- These effects conspire to dilute the effectiveness of the WS BG constraint
- On-axis is the best option

